Isolating Cellulose Nanofibers from Steam-Explosion Pretreated Corncobs Using Mild Mechanochemical Treatments
نویسندگان
چکیده
Cellulose nanofibers (CNFs) with an average diameter 8 nm were isolated from corncobs using a stepwise method that included steam-explosion pretreatment, alkaline treatment, sodium hypochlorite bleaching, highspeed blending, and ultrasonic treatment. This mechanochemical method used only two chemical reagents in low concentrations to remove noncellulosic components. The removal of non-cellulosic components was confirmed by Fourier-transform infrared spectroscopy. X-ray diffraction revealed an increase in crystallinity during steam explosion and subsequent mechanochemical treatments. Pretreatment by steam explosion caused the partial hydrolysis of hemicellulose and loosened the structure of raw materials, which facilitated the subsequent chemical processes. The thermal stability and morphology of samples at different stages were also investigated. Steam explosion increased the thermal stability of hemicellulose and cellulose components, as it removed a fraction of hemicellulose. High-speed blending reduced the entanglement of cellulosic fibers and created uniform size. Ultrasonic treatment was used in the final step of nanoscale fibrillation. The method used in this study is environmentally friendly and has the potential to be applied at industrial scale.
منابع مشابه
Efficient Enzymatic Hydrolysis of Bamboo by Pretreatment with Steam Explosion and Alkaline Peroxide
A combination of steam explosion (SE) and alkaline peroxide (AP) used to pretreat bamboo was investigated. Steam explosion at 224 °C for 4 min was applied to bamboo, and the pretreated bamboo was delignified by alkaline peroxide. Enzymatic hydrolysis was compared in the pretreated samples. Steam pretreatment led to remarkable hemicellulose solubilization (63.2%). Lignin solubilization (93.1%) w...
متن کاملComparison between Wet Oxidation and Steam Explosion as Pretreatment Methods for Enzymatic Hydrolysis of Sugarcane Bagasse
Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised o...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Mild Steam Explosion of Norway Spruce
The most common wood species in Sweden, and one of the most important renewable raw materials in Northern Europe, is Norway spruce (Picea abies). Today, it is utilized mainly for sawed timber and the production of pulp and paper. A modern kraft pulp mill that produces bleached pulp has a material efficiency of about 40-45%, and the final product contains mainly cellulose. The other components o...
متن کاملA comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar
BACKGROUND Current single-stage delignification-pretreatment technologies to overcome lignocellulosic biomass recalcitrance are usually achieved at the expense of compromising the recovery of the polysaccharide components, particularly the hemicellulose fraction. One way to enhance overall sugar recovery is to tailor an efficient two-stage pretreatment that can pre-extract the more labile hemic...
متن کاملIndustrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.
Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatmen...
متن کامل